$6^{\text {th }}$ Class
> Mathematics: Ans: (C)
Find LCM and then add 15 minutes.
Physics: Ans: (C)
> Chemistry: Ans: (A)
> Biology: Ans: (B)
$7^{\text {th }}$ Class
> Mathematics: Ans: (B)
> Physics: Ans: (A)
$>$ Chemistry: Ans: (C)
> Biology: Ans: (C)
$8^{\text {th }}$ class
> Mathematics: Ans: (C)

$$
\begin{aligned}
& \text { Given } \frac{(0.6)^{0}-(0.1)^{-1}}{\left(\frac{3}{2^{3}}\right)^{-1}\left(\frac{3}{2}\right)^{3}+\left(\frac{-1}{3}\right)^{-1}} \Rightarrow \frac{1-\left(\frac{1}{10}\right)^{-1}}{\left(\frac{3}{8}\right)^{-1}\left(\frac{27}{8}\right)^{3}+\left(\frac{-1}{3}\right)^{-1}}\left(\because a^{0}=1\right) \\
& \Rightarrow \frac{1-10}{\left(\frac{8}{3}\right)\left(\frac{27}{8}\right)+(-3)}\left(\because \frac{1}{\left(\frac{a}{b}\right)}=\frac{b}{a}\right) \Rightarrow \frac{-9}{9-3}=\frac{-9}{6}=\frac{-3}{2}
\end{aligned}
$$

$>$ Physics: Ans: (B)
> Chemistry: Ans: (A)
$>$ Biology: Ans: (B)

$9^{\text {th }}$ Class

> Mathematics: Ans: (C)
$\angle Q X Y=60^{\circ} \quad[\because \angle A X O$ and $\angle Q X Y$ are linear pair $]$
$\angle B Y X=70^{\circ} \quad[\because \angle \mathrm{GYX}$ and $\angle \mathrm{BYR}$ are vertically opposite angles]
$\therefore \angle P Q R=50^{\circ} \quad[\because \angle \mathrm{QXY}$ and $\angle \mathrm{BYX}$ and $\angle \mathrm{PQR}$ are angles in a triangle $]$
$\angle G Z C=70^{\circ} \quad[\because \angle \mathrm{BZC}$ and $\angle \mathrm{BYR}$ are alternate angles $]$
$\angle A X P=60^{\circ} \quad[\because \angle \mathrm{AXQ}$ and $\angle \mathrm{AXP}$ are linear pair $]$
$\therefore \angle C W P=60^{\circ} \quad[\because \angle \mathrm{CWP}$ and $\angle \mathrm{AXP}$ are corresponding angles]
Physics: Ans: (B)
$>$ Chemistry: Ans: (B)
Biology: Ans: (B)
$10^{\text {th }}$ class
> Mathematics: Ans: (A)
It is known that the system of equations $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2}-y+c_{2}=0$ has no solution,
If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
The given system of linear equations is :
$\frac{4(a+b)}{2 b}=\frac{-2 b}{a-b} \Rightarrow 4(a+b)(a-b)=-4 b^{2}$
$\Rightarrow a^{2}-b^{2}=-b^{2}$
$\Rightarrow a^{2}=0 \Rightarrow a=0$
$4(a+b) x-2 b y-1=0$
$2 b x+(a-b) y+8=0$
Since this system has no solution, it can be concluded that: Thus the value of a is 0 .
Physics: Ans: (A)

Chemistry: Ans: (C)

Biology: Ans: (D)
Reasoning : Ans: (C)
In 12 h , they are right angles, 22 times.
So, in 24 h , they are at right angles, 44 times

